
Integrating ODB-II, Android, and Google App Engine to Decrease
Emissions and Improve Driving Habits

Chris Furmanczyk
UW CSE

1222 Lakeview Blvd E #3
Seattle, WA 98102

1.425.232.0416
furmac@cs.washington.edu

David Nufer
UW CSE

8515 SW Halter Terrace
Beaverton, OR 97008

1.503.530.6381
dnufer@cs.washington.edu

Brent Sandona
UW CSE

185 Stevens Way
Seattle, WA 98195

1.206.543.1695
sandona1@cs.washington.edu

Benjamin Ullom
UW CSE

4122 Whitman Ave N
Seattle, WA 98103

1.206.228.8058
ullom@cs.washington.edu

ABSTRACT

Every time a car is driven, sensors within the car generate
information on a number of crucial systems that are
typically only accessed when something goes wrong and
the car is taken to a mechanic. The diagnostic (OBD-II)
port on a vehicle provides a way to access this information
so that it can be used to monitor the state of the vehicle at
any time. Saving and tracking this information allows
long-term driving trends and engine health to be monitored.
When provided with this information, it is possible for
drivers to significantly decrease their fuel consumption and
CO2 emissions, improve driving safety, and make better
maintenance decisions. Existing products are either
expensive all-in-one solutions for mechanics or smaller
devices designed for hobbyists to use in tuning, typically by
connecting them to a PC. Our solution is targeted at
average consumers and must be easy to use, easy to install,
and require little maintenance. Our projects consists of
three parts: 1) a hardware device that physically plugs into
the car to gather information and transfer it to 2) an
application on a smart phone running Android that saves
the information, tags it with GPS and time stamps, and
uploads it to 3) a Google App that will take the information
and display it (route and sensor data) in an easy-to-read
format.

Keywords

BD-II, Car, Mileage, Android, Google App, ELM327, ISO,
CAN, PWM, VPW, GPS, Safe driving, Efficiency

1. INTRODUCTION
Every time a car is driven, sensors within the car gather
information on a number of crucial systems that are
typically only accessed when something goes wrong and
the car is taken to a mechanic. The diagnostic (OBD-II)
port on a vehicle provides a way to access this information
so that it can be used to monitor the state of the vehicle at
any time. By saving and tracking this information, long
term driving trends and engine health can be monitored.
When provided with this information, it is possible for
drivers to significantly improve their driving habits. Our
goal is to design a device to interface with a car's OBD-
II port and generate data that can be viewed later in an

easily understood format on a web site. Our device will
collect vehicle speed, mass air flow, oxygen sensor values,
RPM, and 12 other values (which can be used to calculate
mileage), accelerometer values, (which can be used to
signal unsafe driving events), and provide access to trouble
codes (which will give the driver information about what is
wrong with their car). By gathering this information,
saving it, and allowing the driver to access it after they are
done driving, we think that we can help the driver: a)
decrease fuel consumption and CO2 emissions, b) improve
driving habits and safety, and c) become empowered when
it comes to maintaining and repairing their vehicle.
To meet our goals, we decided to divide the project into
three parts: 1) a hardware device that physically plugs into
the car to gather information and transfer it to 2) a smart
phone running Android that saves the information, tags it
with GPS and time stamps, and uploads it to 3) a Google
App that will take the information and display it (route and
sensor data) in an easy-to-read format. This modular
approach allowed us to work on the different parts
independently and will also allow for greater flexibility in
the future. Any individual part can change significantly
without affecting the performance of any other part,
allowing for multiple smart phone platforms and different
hardware devices to be supported in the future.

Figure 1 Vayta Hardware Device

In this paper we will discuss related work, the technical
details of our project, how our device performed, future
work, and what we would change if we were to do this
project over.

2. RELATED WORK
There are a few products on the market that gather and
display information from the OBD-II port, but none of
them provide all of the functionality provided by our
project. All of the devices currently on the market have
one or more of the following drawbacks:
• Require a PC to be connected to view/analyze the data.
• Show only live data and do not offer long-term data

tracking.
• Require a cable connection directly to a computer.
• Do not provide route tracking and data correlation with

GPS location.
• Do not provide a website to view data
One such product is OBDLink, by ScanTool, connects to a
PC using either USB or Bluetooth. It allows long-term data
collection and analysis using provided Windows software
[1]. Since this device doesn't have access to GPS data, it
cannot correlate the data collected with route information.
 It also uses Windows only software, so the data is not as
easily accessible as it would be on a web site.
Another product is Rev, by DevToaster, is software for an
iPhone or iPod Touch that can do live data monitoring,
GPS tracking, and limited long-term data gathering [2]. It
is software only, so you must purchase a scan tool that
connects using an Ad-hoc WiFi network. Their website
suggests that there are at least three such devices available.
 This software has the same drawbacks as our Android App
(platform specific) and is designed more for instant or
short-term data viewing rather than long-term driving
trends.
There are also several devices [3,4] available that plug into
the OBD-II port and save information to a SD card. The
card can then be connected to a PC to view/analyze the
data. These devices have the same drawbacks as the
OBDLink above, but don't require a PC to be in the car to
gather data. However, this does mean that the device has to
be removed from the vehicle and the data manually
uploaded to a PC in order to be of use.

3. TECHNICAL DETAILS
3.1 Overview
Our hardware device consists of an ELM327 to interface
with the OBD port, an ATmega644 microcontroller to
facilitate communication, a 1MB flash memory module to
store data, an accelerometer, and a Bluetooth module to
interface with the smart phone.
The Android app connects to the hardware device via
Bluetooth, stores the data in an internal database (along

with a GPS location), shows a live snapshot of the gathered
data, and uploads the data (in XML format) to a central
server using FTP.
The Google App processes the data and displays the route
on a map. When you click on the GPS points, you can see
the data that was gathered.

3.2 Implementation Details
3.2.1 Hardware
The	 Vayta	 hardware	 device	 is	 designed	 to	 interface	 with	
the	 car	 using	 the	 OBD-‐II	 port.	 	 Since	 there	 are	 several	
different	 communications	 in	 use,	 depending	 on	
manufacturer	 and	 model	 year,	 our	 goal	 was	 to	 develop	 a	
device	 that	 could	 use	 any	 of	 the	 protocols	 that	 are	
commonly	 in	 use.	 	 Once	 connected	 to	 the	 vehicle,	 our	
device	 requests	 the	 values	 of	 16	 different	 measures	
once	 per	 second.	 	 At	 the	 same	 time,	 it	 reads	 the	
accelerometer	 values.	 	 Once	 it	 has	 read	 all	 of	 the	 data,	 it	
stores	 it	 in	 a	 flash	 memory	 module	 until	 the	 Android	
app	 requests	 it.	 	 Once	 the	 data	 is	 requested,	 our	 device	
reads	 it	 from	 the	 memory	 and	 transmits	 the	 raw	 values	
to	 the	 smart	 phone	 over	 a	 Bluetooth	 wireless	
connection.	

ELM327
The ELM communicates with the OBD-II port by sending
PIDs (Parameter IDs) and receiving data from the car. The
enumeration of PIDs is standardized, meaning that 0x010D
(mode 01, PID 0D) is always a request for a single byte
value containing the car's speed. However, it is not required
that every car function with every PID.
The ELM is a device originally for terminal interaction
with a car's OBD-II port. It accepts commands in ASCII to
change its settings or establish communication with the
OBD-II port. Its data responses are returned as ASCII

Figure 2 Data Flow Overview

encoded hex values with a '>' character to represent the end
of a command. Therefore, all responses from the ELM
must be reverted into raw byte data by equating 0x30 ('0')
with byte value 0, 0x46 ('F') with byte value 15, and so
forth for all hex values 0-F.
Interpreting responses from the ELM also includes
separating data from request confirmations and other
values. The first step in this process is to filter out any non-
hex characters. This is accomplished by only analyzing
incoming data from the ELM that is ASCII '0'-'9' or 'A'-'F'.
Secondly, the ELM returns a request confirmation for each
line of data. Normally this is of the form '4&##' where & is
a confirmation of the mode and ## is a confirmation of the
PID. Therefore, ignoring the first four characters (that pass
through the hex filter) will bypass the confirmation. The
PID for the VIN (vehicle identification number) is the
exception. The PID for the VIN is a multiline response with
each line having both a confirmation and two characters for
a line number. Therefore, ignoring the first six characters
will bypass the confirmation in this case. The final step is
to only accept as much data as is needed. Some PIDs used,
including 0x0114, return two bytes of data when only the
first is used. Then when the '>' character is seen, it is
known that the response is complete and the ASCII can be
converted into raw hex values.

Flash Memory
The flash memory allows for long term buffering of
gathered data as well as not subjecting the user to
constantly having Bluetooth communications open. Its
storage is structured to make efficient use of space while
being able to use the device across multiple vehicles. In
addition, the lack of a page erase influenced decisions
about long-term storage. The memory in use features 1 MB
of storage divided into 4 Kbyte sectors and 256 byte pages.
Pointers for the current memory locations (current reading
and writing locations) are stored within the ATmega644's
EEPROM. To prevent the EEPROM from dying quickly (it

only has ~100,000 writes) the decision was made to only
update these pointers in EEPROM when a sector transition
was made. Sector transitions were chosen because locations
in memory can only be written to after a sector erase has
been performed on that location. If a sector boundary
wasn't reached but the pointer was saved before a reset, the
new data would not be recordable. The consequence of this
method is that data is only saved through a reset when an
entire sector has been filled.
Additionally, to standardize how the Android application
would receive the data, a page worth of data was collected
before being written to memory. Each page begins with 25
bytes for the VIN in order to identify which vehicle the
data is associated with. The following 231 bytes are divided
into 21 byte data-slices. Each data-slice represents a
complete collection of data (all the PID results and the
accelerometer values). Therefore, each page contains 11 of
these data-slices.

ATmega644
The ATmega644 connects all the hardware components
together. This specific microcontroller was chosen for its
numerous communication ports, including two UART ports
and one SPI port. The four main functions of the
microcontroller are to: 1) communicate with the ELM to
receive OBD-II port information, 2) take accelerometer
data, 3) store data to flash memory, and 4) retrieve data
from flash memory and send it through Bluetooth.
The ELM is connected to the Atmega644 through a UART
port. Communication with the ELM is initialized by
resetting the ELM's current settings and choosing a
compatible protocol. From then on, PIDs are sent and the
responses are analyzed as described in the section above.
An interrupt-based timer sets a data collection flag once a
second. When an entire data-slice has been collected, this
flag is turned off. This prevents a data-slice from being
collected more than once per second.
Accelerometer data is collected using the built-in analog to
digital converter. When all of the PIDs have been collected,
interrupts for collecting accelerometer data are triggered.
The X-, Y-, and Z-axes are each connected to a different
single-input analog to digital converter, selected by a MUX
register. Data for each axis is collected during each data-
slice.
The flash memory is connected to the ATmega644 through
the SPI port. Storing data in the flash memory starts with
placing the data in a buffer. When a page worth of data has
been placed in the buffer, a check is made to see if the
memory is busy. Once it is not, the buffer is written to
memory. Page structure and memory management are
described in the section above.
The Bluetooth module is connected to the ATmega644
through a UART port. Reading from flash memory occurs
when a request for data has been received over Bluetooth

Figure 3 Hardware Data Flow

from the Android application in the form of the byte 0xCD.
This is detected using a UART received interrupt. If there
is not an entire page worth of new data in memory at the
time then the end signal, 0xEE, is sent. If new pages do
exist in memory, a single page is placed within a buffer.
This buffer is then sent through Bluetooth, using the UART
transmit interrupt, to the Android application. When the
buffer has finished being sent, the ATmega644 fetches
another page from memory. If there are no more pages, it
instead sends the end signal.

3.2.2 Android App
The Android App's main purpose is to act as a bridge
between the hardware and the Google App, but can also be
used for other purposes like displaying live data. There are
three main components of the Android App: 1)
Communication with the device, 2) Data Processing and
Storage, and 3) Data transmission to the Google App. The
application also allows the user to customize some settings
like username and password for the Google App, and watch
live data as it is collected from the device.

Communication with the Device
Communication with the device is done over Bluetooth.
Before the phone can started downloading data from the
device, the phone and the device must pair with each other
over Bluetooth. The pairing process is carried out through
the phone's operating system. The pairing process only
needs to be carried out once for a device because the phone
will remember which devices it is paired to. Once the
phone and the device are paired, the Android App will be
able to connect and send requests for data. Data collected
from the device is divided into trips. A single trip can be
started and stopped by a user in the application by pressing
the "Start Trip" button. This action causes the application
to start a background service on a phone, which runs for the
duration of the trip. The background service controls most
of the functions of the application.
When the background service starts, it determines a unique
ID number to assign the current trip. The service then
checks to make sure Bluetooth is both available and
enabled on the phone. If Bluetooth is not enabled, the
application will prompt the user to turn on Bluetooth. Once
Bluetooth is enabled, the background service will try to
connect with the device. If the connection is ever broken,
or somehow interrupted, the background service will
automatically try to reconnect with the device.
Once a connection with the device has been established, the
phone will start sending requests for data to the device.
The frequency of these requests can be set by the user. A
request for data is initiated by the background service by
sending a byte with value 0xCD to the device. The
background service will then continue to read data from the
device until it reads an end sentinel with value 0xEE. The
data is then processed, and entered into a database on the

phone as described in the next section. The background
service will now wait for certain interval before making
another request.

Data Processing and Storage
Data is stored in two tables of a SQLite database on the
phone. The first table holds data for all the measurements
that have been collected, along with which trip each data
point belongs to. The second table associates trips with
VIN numbers. The data collected from the device is raw,
which means that is must be converted to proper units.
Unit conversions for the OBD metrics are calculated
according to the Wikipedia page of OBD-II PIDs
[CITATION NEEDED]. Raw Accelerometer values are
converted into units of g's (gravity), using this formula,
where 'value' is the acceleration in g's and 'A' is the raw
byte value:
value = (A-77) * 3.6/77
This results in a value between -3.6g and 3.6g. After all the
raw values for a sample have been converted into the
correct units, they are entered into the database. If GPS is
available on the phone, latitude, longitude, and altitude are
also entered into the database.
When the user ends the trip, the background service stops,
and the data for the trip is written to an XML file according
to the following format:
<trip id="123456789">
 <vin>1234567890123456</vin>
 <username>johndoe</username>
 <password>secret</password>
 <data>
 <timepoint id="123456789">
 <pid_0104>value</pid_0104>
 <pid_0105>value</pid_0105>
 ...
 <accel>accel_x,accel_y,accel_z</accel>
 <GPS>lat,lon,alt</GPS>
 </timepoint>
 <timepoint id="123456790"> ... </timepoint>
 ...
 </data>
</trip>
Inside each timepoint tag, there is a tag for each of the PIDs
that we are measuring, and the data tag can have an
arbitrary number of timepoints inside of it. The username,
password and VIN are loaded from the phone's memory
after the user has set them from within the app.
XML files are GZIP compressed when being stored on the
phone and transmitted to the Google App to save memory
and upload time. After some testing, it was determined that
the XML files reduce in size by between 80% and 90%,
which saves a huge amount of memory and upload time.
Currently, data remains on the phone until the user
manually clears it. This is accomplished by pressing a

button in the application. All data on the phone is cleared
by through the following process: dropping both tables
from the database, and deleting all the XML files that have
been saved on the phone.

Data Transmission to the Google App
Originally, we planned to upload XML data files using the
FTP protocol. File uploading via ftp was completed
successfully using another Android application called
AndFTP [6]. AndFTP has the ability to let other
applications easily upload files to any FTP server easily.
While this was successful, we later found out that Google
App Engine does not support upload files via FTP. Instead,
we tried using posting the XML files over HTTP to the
Google App. However, at the point we discovered this
problem, there was not enough time to implement HTTP
post requests successfully.

User Interface
There are three major screens in the application: the Home
screen, the Settings page, and the Live Data Feed. A
notification also appears in the notification area of the
phone when a trip is in progress.

The Home screen contains all of the controls of the
application. The user can navigate to the Settings page or
the Live Data Feed, can start and end trips, can clear stored
data, and can upload data to the Google App. The Settings
page allows the user to set their username and password for
the Google App, as well as set the time interval for data
requests to the device. The live data feed shows different
metrics for the single newest data sample that the phone has
received from the device. The notification for the
application displays the status of the connection to the
device.

3.2.3 Google App
The Vayta web portal is the user-friendly front end for the
users of the Vayta system. Data should be periodically
uploaded as an XML file from the Android application via
an HTTP post. This operation can occur automatically
without user intervention using a combination of when the
phone approaches a memory threshold and when a certain
number of trips have been recorded. The web application
has a SAX parser to convert the XML file into the
application’s data model representation.
The	 web	 portal	 requires	 unique	 usernames	 and	 has	
password-‐protected	 accounts.	 Signing	 in	 to	 the	 web	
portal	 directs	 users	 to	 their	 front	 page	 where	 they	 can	
view	 updates,	 smart	 driving	 tips,	 community	 stats,	 and	
past	 driving	 trips.	 The	 past	 driving	 trips	 link	 to	 the	
maps	 display	 page.	 The	 maps	 display	 page	 loads	 a	
Google	 Maps	 image	 that	 shows	 the	 path	 the	 user	 took	
during	 that	 trip.	 The	 map	 displays	 markers	 at	 the	
various	 GPS	 coordinates	 at	 which	 the	 Vayta	 system	
recorded	 data.	 The	 user	 can	 investigate	 their	
instantaneous	 driving	 data	 at	 these	 various	 markers,	
including	 statistics	 such	 as	 engine	 temperature,	 RPMs,	
and	 vehicle	 speed.	
The	 Vayta	 web	 portal	 was	 hosted	 on	 Google	 App	 Engine.	
We	 chose	 this	 hosting	 service	 because	 it	 was	 free	 and	
provided	 us	 with	 all	 the	 bandwidth	 we	 anticipated	
needing.	 Google	 App	 Engine	 supports	 two	 different	
server-‐side	 scripting	 languages.	 Originally	 it	 supported	
the	 Python	 Django	 framework,	 but	 recently	 it	 supported	
Java	 Server	 Pages.	 We	 wrote	 the	 portal	 in	 Java	 Server	
Pages	 because	 everyone	 in	 our	 group	 was	 familiar	 with	
Java,	 but	 not	 with	 Python.	 We	 used	 Google’s	 Java	
datastore	 API	 to	 save	 permanent	 data	 on	 the	 server.	
This	 was	 built	 on	 top	 of	 the	 Java	 Data	 Object	 Query	
Language	 (JDOQL).	 Other	 APIs	 the	 web	 portal	 used	 were	
SAX	 for	 parsing	 XML	 data	 from	 the	 Android	 app	 and	 the	
Javascript	 library	 from	 the	 Google	 Maps	 API.	
The	 Vayta	 web	 portal’s	 data	 model	 representation	 is	 a	
3-‐layer	 hierarchy.	 The	 top	 of	 the	 hierarchy	 is	 VaytaUser	
objects	 (users).	 These	 objects	 encapsulate	 usernames	
and	 passwords.	 Each	 user	 is	 associated	 with	 multiple	
Trip	 objects	 (trips).	 These	 objects	 encapsulate	 a	 Date	

Figure 4 Android App User Interface

time	 when	 the	 trip	 took	 place.	 Trips	 are	 associated	 with	
users	 by	 storing	 the	 user’s	 unique	 key.	 This	 backwards	
associativity	 increases	 the	 search	 space	 in	 the	 database,	
but	 provides	 optimal	 data	 object	 size.	 The	 lowest	 layer	
in	 the	 data	 model	 hierarchy	 is	 the	 VaytaPoint	 object	
(point),	 which	 encapsulates	 instantaneous	 driving	 data.	
Each	 trip	 is	 associated	 with	 multiple	 points,	 and	 these	
points	 are	 also	 backwards	 associative	 with	 their	 trip.	
Security	 was	 not	 a	 primary	 concern	 in	 this	 web	
application.	 When	 users	 sign	 in,	 if	 the	 username	 and	
password	 combination	 is	 recognized	 in	 the	 database,	
then	 their	 identity	 is	 saved	 in	 a	 cookie.	 This	 cookie	
serves	 as	 validation	 in	 the	 application.	 For	 instance,	
visiting	 the	 user’s	 front	 page	 with	 a	 recognized	
username	 set	 in	 the	 cookie	 will	 load	 that	 user’s	 data.	
	
For	 the	 user’s	 front	 page,	 the	 application	 loads	 all	 trips	
from	 the	 database	 with	 a	 user	 key	 that	 matches	 the	
username	 set	 in	 the	 cookie.	 It	 displays	 these	 trips	 as	 a	
string	 and	 wraps	 them	 in	 an	 anchor	 that	 links	 to	 the	
maps	 display	 page.	 The	 maps	 display	 page	 takes	 an	
HTTP	 get	 parameter	 that	 is	 the	 key	 of	 the	 selected	 trip.	
The	 maps	 display	 page	 loads	 all	 the	 points	 with	 a	 trip	
key	 that	 matches	 the	 key	 passed	 as	 a	 get	 parameter.	 It	
loads	 a	 Google	 Map	 using	 Javascript	 in	 road	 view	 mode	
centered	 on	 the	 first	 GPS	 coordinate	 of	 the	 trip.	 Then	 for	
each	 of	 the	 points	 from	 the	 trip,	 the	 script	 places	 a	
marker	 on	 the	 map	 at	 the	 points	 GPS	 coordinates	 and	
connects	 these	 markers	 with	 a	 path.	 The	 script	 also	
adds	 an	 event	 listener	 to	 each	 of	 the	 markers	 such	 that	 a	
Javascript	 handler	 will	 retrieve	 the	 points	 data	 on	 click	
and	 display	 them	 in	 a	 tabular	 format	 on	 the	 side	 of	 the	
map. 	
To	 upload	 data	 from	 the	 Android	 app,	 there	 is	 a	 servlet	
that	 accepts	 XML	 files	 as	 HTTP	 post	 requests.	 The	 XML	
is	 in	 a	 pre-‐determined	 format	 that	 represents	 trip	 data.	
The	 servlet	 reads	 the	 file	 and	 parses	 it	 using	 the	 SAX	
protocol	 into	 the	 application’s	 data	 model	
representation	 of	 users,	 trips,	 and	 points.	 At	 the	 time	 of	
this	 writing,	 there	 is	 a	 bug	 that	 prevents	 uploading	 this	
data,	 but	 this	 accurately	 describes	 the	 intent	 and	 what	
was	 attempted	 to	 implement	 the	 data	 transfer. 	

4. EVALUATION AND RESULTS
After building the hardware device and completing the
Android App and Google App, we were able to
successfully record data from several trips in a car. Our
hardware device connected without issues using the ISO
protocol, saved the data, and uploaded it to the Android
phone. The Android App saved the data, displayed a live
view, tagged the data with GPS coordinates, and uploaded
to a server using FTP. We were then able to open the XML
files and successfully viewed the data collected from the
vehicle. We were hoping to collect a full set of

measurements every second, but using the ISO 14230
protocol we were only able to collect a full set every 3-4
seconds. Unfortunately, we did not have enough time to
complete the integration with the Google App, so the data
could not be uploaded directly to the Web portal.

5. DISCUSSION

5.1 Our Solution
Our solution accomplishes our basic goals. The hardware
interfaces with a car's diagnostic port and gathers
information. This information is transmitted through an
Android phone to the web portal. The web portal can then
analyze the data and, when GPS coordinates are included,
plot that data onto a map. These goals have been realized
with the process of collecting and uploading real-world
data.
However, there are a couple of points that didn't turn out as
well as we had hoped. On the hardware front, we originally
had planned to make use of every protocol. In the end, we
only had the ISO 9141 and ISO 14230 communication
protocols working. While this does limit the usefulness
somewhat, many vehicles on the road today use one of
these protocols and we had no problem finding one to test
with. The major disadvantage of being forced to use ISO
was the speed, as a data-slice takes approximately 3.5
seconds rather than less than a second when using PWM or
VPW.
Additionally, our current data collection and storage system
is static. It does not provide the ability for a live feed of
data. The inconsistency of PIDs supported between
vehicles is another problem we did not address. A dynamic
request system could check for which PIDs are available
and only make those requests in order to save time. Having
a page erase memory module would also allow for more
flexible memory storage, as would updating the EEPROM
pointers only when going into sleep mode or detecting a
power down.
The main goals of the Android application were to: 1)
Collect data from the hardware, 2) Store the data on the
device, and 3) Transmit that data the Google App. The
first two goals were completed successfully. We were able
to collect data from the hardware over Bluetooth, convert
the data to correct units and display it to the user, and store
the data on the phone for future use. The final goal was
partially successful. We were able to upload XML data to
a server over FTP, but we ran out of time before we were
able to send the data to the Google App.
For the web portal we had meant to perform automatic
analysis and present only the most relevant information to
the user. However, the web portal currently only presents a
subset of the data collected from the car in raw format.
Also the web portal is not the complete application that we
had discussed. It only supports the primary feature of

presenting users' driving data. Some of the secondary
features include analyzing when a car is due for a check-up,
calculating an eco-score, and sharing information between
users in a community-driven web space. These secondary
features were not implemented.

5.2 Future Work
While we were able to develop a working prototype that
accomplished many of our goals, we simply did not have
enough time to provide all of the functionality that we
would have liked. If work on the device continues, the
following areas should be addressed:
- Support for multiple OBD protocols. Currently, the
device only works with the ISO 9141 and ISO 14230
protocols. The hardware should support 8 protocols total,
but we were not able to get it to work reliably with any of
the others.
- Make the hardware device smaller. The hardware
device ended up being larger than we wanted in order to fit
all of the components. Ideally, the device would be a small
box connected directly to the OBD connector, rather than a
large box connected by a cable. Our hardware device is
about 4"x7" and must sit on the floor, which could present
a safety hazard.
- Dynamic Memory Structure. The flash memory module
that we used was somewhat limiting in the way it could
store data. The data structure we had to use was very rigid
and does not allow for varying PID support.
- Detect car ignition state. Make changes to allow the
hardware device to stay plugged in and detect when the car
is turned on (and go into low power mode when the car is
off).
- Collect data every second. We would like to collect data
on regular intervals, preferably once per second, regardless
of the protocol that is being used. The firmware would
need to be optimized for each protocol in order to
accomplish this.
- Keep time on the hardware. In order to properly
perform calculations with the data, the exact time that the
measurement was taken is needed. Currently, the data is
time stamped when it is uploaded to the phone, which
could have very little to do with when it was taken. The
hardware device does not have a real-time clock, but we
should be able to approximate by periodically synching the
time from the Android phone.
- Fix bugs in data upload to website. We did not have
time to properly integrate the communication of data
between the Android app and the Google app. This
severely limits the usefulness of the device and should be a
priority.
- Conserve smart phone battery life. Make changes to the
Android app that takes battery life into consideration (e.g.
controlling when GPS in on).

- Make data upload an automatic process for the
Android app. The less the end user needs to do, the more
likely they are to use the device. If we can let the Android
app run in the background and automatically start/end trips
and upload data it could greatly increase usage of the
device.
- View/clear trouble codes. Most similar products on the
market allow the user to view and clear trouble codes. We
did not have time to implement this function, but it should
be fairly simple and would open up another market for the
device.

5.3 Hindsight
The ELM was responsible for saving a considerable
amount of time, already designed and programmed for
communicating with the OBD-II port. However, it also
happens to be a large limitation within our design. It takes a
considerable amount of space on our board and was
originally designed for human interaction, translating
everything into ASCII and including non-data characters. A
future approach, with more time available, would exclude
the ELM from its design. Instead, we would program all of
the functions of the ELM onto the microcontroller. This
would also allow for a smaller microcontroller, as one less
UART port would be required.
There are several changes to make in the Android
application. First, data upload would be automatic.
 Currently, the user must manually upload data for a whole
trip after the trip is completed. In the future, the
application would automatically stream data up to the
Google App during a trip if an Internet connection was
available. If no Internet connection was available during a
trip, then the application would automatically batch the
data up the next time it gets an internet connection.
Second, battery life concerns would be considered. The
GPS receiver can drain battery quickly if it is used too
much. Also, since the main functions of the application run
in the background, it is possible that the background service
drains a lot of battery. Requiring the Bluetooth module to
be on so much also reduces the battery life of the phone.
Third, the user interface could be made more user friendly
since most of the development was focused on other parts
of the application.
There are only two noteworthy changes that could be made
to the web portal. The first is to rigorously analyze and
optimize the database. We implemented the database to
minimize the size of data objects, but this came at the cost
of additional time complexity in queries. This was not a
problem in our alpha, because there was very limited data.
The second change is that we should analyze security risks.
We reasoned that in alpha, we can trust our users, but
before releasing the product, we should perform a security
audit.

6. CONCLUSION
With rising fuel prices and concerns about global warming,
people are more concerned than ever with decreasing fuel
usage. When drivers are provided with data about their
driving habits (such as average mileage), they can easily
decrease their fuel consumption, sometimes significantly.
 When combined with route information, drivers would be
able to compare and modify routes based on mileage
information. The successful development of a working
prototype indicates that this type of product could be
introduced into the market. If the device could be made to
support most smart phone platforms, made easy enough to
use, and the price brought low enough, our device could
help to significantly reduce fuel usage, which would have
the added benefit of reducing CO2 emissions. Also, with a
large enough user base it would be possible use
competition to encourage users to reduce fuel usage even
further. It may also be possible to start harvesting for
specific models of vehicles and possibly predict vehicle
breakdowns and suggest vehicle-specific preventative
maintenance. While there is still a lot of work that could be

done to refine the device and make it more robust, our
project has met most of its goals and shown that it is
possible to develop this type of product.

7. REFERENCES
[1] OBDLink Scan Tool, ScanTool.net LLC. Retrieved
6/8/10.
 DOI= http://www.scantool.net/obdlink.html?gclid=CJbk6I
OZjaICFQdkgwodxlXdTw.
[2] Rev, DevToaster LLC. Retrieved 6/8/10.
DOI=http://www.devtoaster.com/products/rev/.
[3] PC Based Scan Tools, ScanTool.net LLC. Retrieved
6/8/10. DOI=http://www.scantool.net/scan-tools/pc-based/
[4] ScanGuageII, Linear Logic LLC. Retrieved 6/8/10.
DOI=http://www.scangauge.com/products/
[5] OBD-II PIDs, Wikipedia. Retrieved 6/8/10.
DOI=http://en.wikipedia.org/wiki/OBD-II_PIDs
[6] Lysesoft: AndFTP. Retrieved 6/8/10.

DOI=http://www.lysesoft.com/products/andftp/

