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ABSTRACT 

Every time a car is driven, sensors within the car generate 
information on a number of crucial systems that are 
typically only accessed when something goes wrong and 
the car is taken to a mechanic.  The diagnostic (OBD-II) 
port on a vehicle provides a way to access this information 
so that it can be used to monitor the state of the vehicle at 
any time.  Saving and tracking this information allows 
long-term driving trends and engine health to be monitored. 
When provided with this information, it is possible for 
drivers to significantly decrease their fuel consumption and 
CO2 emissions, improve driving safety, and make better 
maintenance decisions.  Existing products are either 
expensive all-in-one solutions for mechanics or smaller 
devices designed for hobbyists to use in tuning, typically by 
connecting them to a PC.  Our solution is targeted at 
average consumers and must be easy to use, easy to install, 
and require little maintenance.  Our projects consists of 
three parts: 1) a hardware device that physically plugs into 
the car to gather information and transfer it to 2) an 
application on a smart phone running Android that saves 
the information, tags it with GPS and time stamps, and 
uploads it to 3) a Google App that will take the information 
and display it (route and sensor data) in an easy-to-read 
format. 
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1. INTRODUCTION 
Every time a car is driven, sensors within the car gather 
information on a number of crucial systems that are 
typically only accessed when something goes wrong and 
the car is taken to a mechanic.  The diagnostic (OBD-II) 
port on a vehicle provides a way to access this information 
so that it can be used to monitor the state of the vehicle at 
any time.  By saving and tracking this information, long 
term driving trends and engine health can be monitored. 
When provided with this information, it is possible for 
drivers to significantly improve their driving habits.  Our 
goal is to design a device to interface with a car's OBD-
II port and generate data that can be viewed later in an 

easily understood format on a web site.  Our device will 
collect vehicle speed, mass air flow, oxygen sensor values, 
RPM, and 12 other values (which can be used to calculate 
mileage), accelerometer values, (which can be used to 
signal unsafe driving events), and provide access to trouble 
codes (which will give the driver information about what is 
wrong with their car).  By gathering this information, 
saving it, and allowing the driver to access it after they are 
done driving, we think that we can help the driver: a) 
decrease fuel consumption and CO2 emissions, b) improve 
driving habits and safety, and c) become empowered when 
it comes to maintaining and repairing their vehicle.   
To meet our goals, we decided to divide the project into 
three parts: 1) a hardware device that physically plugs into 
the car to gather information and transfer it to 2) a smart 
phone running Android that saves the information, tags it 
with GPS and time stamps, and uploads it to 3) a Google 
App that will take the information and display it (route and 
sensor data) in an easy-to-read format.  This modular 
approach allowed us to work on the different parts 
independently and will also allow for greater flexibility in 
the future.  Any individual part can change significantly 
without affecting the performance of any other part, 
allowing for multiple smart phone platforms and different 
hardware devices to be supported in the future. 

Figure 1 Vayta Hardware Device 



In this paper we will discuss related work, the technical 
details of our project, how our device performed, future 
work, and what we would change if we were to do this 
project over. 

2. RELATED WORK 
There are a few products on the market that gather and 
display information from the OBD-II port, but none of 
them provide all of the functionality provided by our 
project.  All of the devices currently on the market have 
one or more of the following drawbacks: 
• Require a PC to be connected to view/analyze the data. 
• Show only live data and do not offer long-term data 

tracking. 
• Require a cable connection directly to a computer. 
• Do not provide route tracking and data correlation with 

GPS location. 
• Do not provide a website to view data 
One such product is OBDLink, by ScanTool, connects to a 
PC using either USB or Bluetooth.  It allows long-term data 
collection and analysis using provided Windows software 
[1].  Since this device doesn't have access to GPS data, it 
cannot correlate the data collected with route information. 
 It also uses Windows only software, so the data is not as 
easily accessible as it would be on a web site. 
Another product is Rev, by DevToaster, is software for an 
iPhone or iPod Touch that can do live data monitoring, 
GPS tracking, and limited long-term data gathering [2].  It 
is software only, so you must purchase a scan tool that 
connects using an Ad-hoc WiFi network.  Their website 
suggests that there are at least three such devices available. 
 This software has the same drawbacks as our Android App 
(platform specific) and is designed more for instant or 
short-term data viewing rather than long-term driving 
trends. 
There are also several devices [3,4] available that plug into 
the OBD-II port and save information to a SD card.  The 
card can then be connected to a PC to view/analyze the 
data.  These devices have the same drawbacks as the 
OBDLink above, but don't require a PC to be in the car to 
gather data.  However, this does mean that the device has to 
be removed from the vehicle and the data manually 
uploaded to a PC in order to be of use. 

3. TECHNICAL DETAILS 
3.1 Overview 
Our hardware device consists of an ELM327 to interface 
with the OBD port, an ATmega644 microcontroller to 
facilitate communication, a 1MB flash memory module to 
store data, an accelerometer, and a Bluetooth module to 
interface with the smart phone. 
The Android app connects to the hardware device via 
Bluetooth, stores the data in an internal database (along 

with a GPS location), shows a live snapshot of the gathered 
data, and uploads the data (in XML format) to a central 
server using FTP. 
The Google App processes the data and displays the route 
on a map.  When you click on the GPS points, you can see 
the data that was gathered. 

 

3.2 Implementation Details 
3.2.1 Hardware 
The	  Vayta	  hardware	  device	  is	  designed	  to	  interface	  with	  
the	   car	   using	   the	   OBD-‐II	   port.	  	   Since	   there	   are	   several	  
different	   communications	   in	   use,	   depending	   on	  
manufacturer	  and	  model	  year,	  our	  goal	  was	  to	  develop	  a	  
device	   that	   could	   use	   any	   of	   the	   protocols	   that	   are	  
commonly	   in	   use.	  	   Once	   connected	   to	   the	   vehicle,	   our	  
device	   requests	   the	   values	   of	   16	   different	   measures	  
once	   per	   second.	  	   At	   the	   same	   time,	   it	   reads	   the	  
accelerometer	  values.	  	  Once	  it	  has	  read	  all	  of	  the	  data,	  it	  
stores	   it	   in	   a	   flash	   memory	   module	   until	   the	   Android	  
app	  requests	   it.	  	  Once	  the	  data	   is	  requested,	  our	  device	  
reads	  it	  from	  the	  memory	  and	  transmits	  the	  raw	  values	  
to	   the	   smart	   phone	   over	   a	   Bluetooth	   wireless	  
connection.	  

ELM327  
The ELM communicates with the OBD-II port by sending 
PIDs (Parameter IDs) and receiving data from the car. The 
enumeration of PIDs is standardized, meaning that 0x010D 
(mode 01, PID 0D) is always a request for a single byte 
value containing the car's speed. However, it is not required 
that every car function with every PID.  
The ELM is a device originally for terminal interaction 
with a car's OBD-II port. It accepts commands in ASCII to 
change its settings or establish communication with the 
OBD-II port. Its data responses are returned as ASCII 
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encoded hex values with a '>' character to represent the end 
of a command. Therefore, all responses from the ELM 
must be reverted into raw byte data by equating 0x30 ('0') 
with byte value 0, 0x46 ('F') with byte value 15, and so 
forth for all hex values 0-F.  
Interpreting responses from the ELM also includes 
separating data from request confirmations and other 
values. The first step in this process is to filter out any non-
hex characters. This is accomplished by only analyzing 
incoming data from the ELM that is ASCII '0'-'9' or 'A'-'F'. 
Secondly, the ELM returns a request confirmation for each 
line of data. Normally this is of the form '4&##' where & is 
a confirmation of the mode and ## is a confirmation of the 
PID. Therefore, ignoring the first four characters (that pass 
through the hex filter) will bypass the confirmation. The 
PID for the VIN (vehicle identification number) is the 
exception. The PID for the VIN is a multiline response with 
each line having both a confirmation and two characters for 
a line number. Therefore, ignoring the first six characters 
will bypass the confirmation in this case. The final step is 
to only accept as much data as is needed. Some PIDs used, 
including 0x0114, return two bytes of data when only the 
first is used. Then when the '>' character is seen, it is 
known that the response is complete and the ASCII can be 
converted into raw hex values.  

 

Flash Memory  
The flash memory allows for long term buffering of 
gathered data as well as not subjecting the user to 
constantly having Bluetooth communications open. Its 
storage is structured to make efficient use of space while 
being able to use the device across multiple vehicles. In 
addition, the lack of a page erase influenced decisions 
about long-term storage. The memory in use features 1 MB 
of storage divided into 4 Kbyte sectors and 256 byte pages.  
Pointers for the current memory locations (current reading 
and writing locations) are stored within the ATmega644's 
EEPROM. To prevent the EEPROM from dying quickly (it 

only has ~100,000 writes) the decision was made to only 
update these pointers in EEPROM when a sector transition 
was made. Sector transitions were chosen because locations 
in memory can only be written to after a sector erase has 
been performed on that location. If a sector boundary 
wasn't reached but the pointer was saved before a reset, the 
new data would not be recordable. The consequence of this 
method is that data is only saved through a reset when an 
entire sector has been filled.  
Additionally, to standardize how the Android application 
would receive the data, a page worth of data was collected 
before being written to memory. Each page begins with 25 
bytes for the VIN in order to identify which vehicle the 
data is associated with. The following 231 bytes are divided 
into 21 byte data-slices. Each data-slice represents a 
complete collection of data (all the PID results and the 
accelerometer values). Therefore, each page contains 11 of 
these data-slices.  

ATmega644  
The ATmega644 connects all the hardware components 
together. This specific microcontroller was chosen for its 
numerous communication ports, including two UART ports 
and one SPI port. The four main functions of the 
microcontroller are to: 1) communicate with the ELM to 
receive OBD-II port information, 2) take accelerometer 
data, 3) store data to flash memory, and 4) retrieve data 
from flash memory and send it through Bluetooth. 
The ELM is connected to the Atmega644 through a UART 
port. Communication with the ELM is initialized by 
resetting the ELM's current settings and choosing a 
compatible protocol. From then on, PIDs are sent and the 
responses are analyzed as described in the section above. 
An interrupt-based timer sets a data collection flag once a 
second. When an entire data-slice has been collected, this 
flag is turned off. This prevents a data-slice from being 
collected more than once per second. 
Accelerometer data is collected using the built-in analog to 
digital converter. When all of the PIDs have been collected, 
interrupts for collecting accelerometer data are triggered. 
The X-, Y-, and Z-axes are each connected to a different 
single-input analog to digital converter, selected by a MUX 
register. Data for each axis is collected during each data-
slice. 
The flash memory is connected to the ATmega644 through 
the SPI port. Storing data in the flash memory starts with 
placing the data in a buffer. When a page worth of data has 
been placed in the buffer, a check is made to see if the 
memory is busy. Once it is not, the buffer is written to 
memory.  Page structure and memory management are 
described in the section above. 
The Bluetooth module is connected to the ATmega644 
through a UART port. Reading from flash memory occurs 
when a request for data has been received over Bluetooth 
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from the Android application in the form of the byte 0xCD. 
This is detected using a UART received interrupt. If there 
is not an entire page worth of new data in memory at the 
time then the end signal, 0xEE, is sent. If new pages do 
exist in memory, a single page is placed within a buffer. 
This buffer is then sent through Bluetooth, using the UART 
transmit interrupt, to the Android application. When the 
buffer has finished being sent, the ATmega644 fetches 
another page from memory. If there are no more pages, it 
instead sends the end signal. 

3.2.2 Android App 
The Android App's main purpose is to act as a bridge 
between the hardware and the Google App, but can also be 
used for other purposes like displaying live data.  There are 
three main components of the Android App: 1) 
Communication with the device, 2) Data Processing and 
Storage, and 3) Data transmission to the Google App.  The 
application also allows the user to customize some settings 
like username and password for the Google App, and watch 
live data as it is collected from the device. 

Communication with the Device 
Communication with the device is done over Bluetooth.  
Before the phone can started downloading data from the 
device, the phone and the device must pair with each other 
over Bluetooth.  The pairing process is carried out through 
the phone's operating system.  The pairing process only 
needs to be carried out once for a device because the phone 
will remember which devices it is paired to.  Once the 
phone and the device are paired, the Android App will be 
able to connect and send requests for data.  Data collected 
from the device is divided into trips.  A single trip can be 
started and stopped by a user in the application by pressing 
the "Start Trip" button.  This action causes the application 
to start a background service on a phone, which runs for the 
duration of the trip.  The background service controls most 
of the functions of the application. 
When the background service starts, it determines a unique 
ID number to assign the current trip.  The service then 
checks to make sure Bluetooth is both available and 
enabled on the phone.  If Bluetooth is not enabled, the 
application will prompt the user to turn on Bluetooth.  Once 
Bluetooth is enabled, the background service will try to 
connect with the device.  If the connection is ever broken, 
or somehow interrupted, the background service will 
automatically try to reconnect with the device. 
Once a connection with the device has been established, the 
phone will start sending requests for data to the device.  
The frequency of these requests can be set by the user.  A 
request for data is initiated by the background service by 
sending a byte with value 0xCD to the device.  The 
background service will then continue to read data from the 
device until it reads an end sentinel with value 0xEE.  The 
data is then processed, and entered into a database on the 

phone as described in the next section.  The background 
service will now wait for certain interval before making 
another request. 

Data Processing and Storage 
Data is stored in two tables of a SQLite database on the 
phone.  The first table holds data for all the measurements 
that have been collected, along with which trip each data 
point belongs to.  The second table associates trips with 
VIN numbers.  The data collected from the device is raw, 
which means that is must be converted to proper units.  
Unit conversions for the OBD metrics are calculated 
according to the Wikipedia page of OBD-II PIDs 
[CITATION NEEDED].  Raw Accelerometer values are 
converted into units of g's (gravity), using this formula, 
where 'value' is the acceleration in g's and 'A' is the raw 
byte value: 
value = (A-77) * 3.6/77 
This results in a value between -3.6g and 3.6g.  After all the 
raw values for a sample have been converted into the 
correct units, they are entered into the database.  If GPS is 
available on the phone, latitude, longitude, and altitude are 
also entered into the database. 
When the user ends the trip, the background service stops, 
and the data for the trip is written to an XML file according 
to the following format: 
<trip id="123456789"> 
    <vin>1234567890123456</vin> 
    <username>johndoe</username> 
    <password>secret</password> 
    <data> 
        <timepoint id="123456789"> 
            <pid_0104>value</pid_0104> 
            <pid_0105>value</pid_0105> 
            ... 
            <accel>accel_x,accel_y,accel_z</accel> 
            <GPS>lat,lon,alt</GPS> 
        </timepoint> 
        <timepoint id="123456790"> ... </timepoint> 
        ... 
    </data> 
</trip> 
Inside each timepoint tag, there is a tag for each of the PIDs 
that we are measuring, and the data tag can have an 
arbitrary number of timepoints inside of it.  The username, 
password and VIN are loaded from the phone's memory 
after the user has set them from within the app. 
XML files are GZIP compressed when being stored on the 
phone and transmitted to the Google App to save memory 
and upload time.  After some testing, it was determined that 
the XML files reduce in size by between 80% and 90%, 
which saves a huge amount of memory and upload time. 
Currently, data remains on the phone until the user 
manually clears it.  This is accomplished by pressing a 



button in the application.  All data on the phone is cleared 
by through the following process: dropping both tables 
from the database, and deleting all the XML files that have 
been saved on the phone. 

Data Transmission to the Google App 
Originally, we planned to upload XML data files using the 
FTP protocol.  File uploading via ftp was completed 
successfully using another Android application called 
AndFTP [6].  AndFTP has the ability to let other 
applications easily upload files to any FTP server easily.  
While this was successful, we later found out that Google 
App Engine does not support upload files via FTP.  Instead, 
we tried using posting the XML files over HTTP to the 
Google App.  However, at the point we discovered this 
problem, there was not enough time to implement HTTP 
post requests successfully. 

User Interface 
There are three major screens in the application: the Home 
screen, the Settings page, and the Live Data Feed.  A 
notification also appears in the notification area of the 
phone when a trip is in progress. 

 

The Home screen contains all of the controls of the 
application.  The user can navigate to the Settings page or 
the Live Data Feed, can start and end trips, can clear stored 
data, and can upload data to the Google App.  The Settings 
page allows the user to set their username and password for 
the Google App, as well as set the time interval for data 
requests to the device.  The live data feed shows different 
metrics for the single newest data sample that the phone has 
received from the device.  The notification for the 
application displays the status of the connection to the 
device. 

3.2.3 Google App 
The Vayta web portal is the user-friendly front end for the 
users of the Vayta system. Data should be periodically 
uploaded as an XML file from the Android application via 
an HTTP post. This operation can occur automatically 
without user intervention using a combination of when the 
phone approaches a memory threshold and when a certain 
number of trips have been recorded. The web application 
has a SAX parser to convert the XML file into the 
application’s data model representation.  
The	   web	   portal	   requires	   unique	   usernames	   and	   has	  
password-‐protected	   accounts.	   Signing	   in	   to	   the	   web	  
portal	  directs	  users	   to	   their	   front	  page	  where	   they	  can	  
view	  updates,	   smart	  driving	   tips,	   community	  stats,	  and	  
past	   driving	   trips.	   The	   past	   driving	   trips	   link	   to	   the	  
maps	   display	   page.	   The	   maps	   display	   page	   loads	   a	  
Google	  Maps	   image	   that	   shows	   the	   path	   the	   user	   took	  
during	   that	   trip.	   The	   map	   displays	   markers	   at	   the	  
various	   GPS	   coordinates	   at	   which	   the	   Vayta	   system	  
recorded	   data.	   The	   user	   can	   investigate	   their	  
instantaneous	   driving	   data	   at	   these	   various	   markers,	  
including	   statistics	   such	   as	   engine	   temperature,	   RPMs,	  
and	  vehicle	  speed.	  
The	  Vayta	  web	  portal	  was	  hosted	  on	  Google	  App	  Engine.	  
We	   chose	   this	   hosting	   service	   because	   it	  was	   free	   and	  
provided	   us	   with	   all	   the	   bandwidth	   we	   anticipated	  
needing.	   Google	   App	   Engine	   supports	   two	   different	  
server-‐side	   scripting	   languages.	  Originally	   it	   supported	  
the	  Python	  Django	  framework,	  but	  recently	  it	  supported	  
Java	   Server	   Pages.	  We	  wrote	   the	   portal	   in	   Java	   Server	  
Pages	  because	  everyone	  in	  our	  group	  was	  familiar	  with	  
Java,	   but	   not	   with	   Python.	   We	   used	   Google’s	   Java	  
datastore	   API	   to	   save	   permanent	   data	   on	   the	   server.	  
This	   was	   built	   on	   top	   of	   the	   Java	   Data	   Object	   Query	  
Language	  (JDOQL).	  Other	  APIs	  the	  web	  portal	  used	  were	  
SAX	  for	  parsing	  XML	  data	  from	  the	  Android	  app	  and	  the	  
Javascript	  library	  from	  the	  Google	  Maps	  API.	  
The	  Vayta	  web	  portal’s	   data	  model	   representation	   is	   a	  
3-‐layer	  hierarchy.	  The	  top	  of	  the	  hierarchy	  is	  VaytaUser	  
objects	   (users).	   These	   objects	   encapsulate	   usernames	  
and	   passwords.	   Each	   user	   is	   associated	   with	   multiple	  
Trip	   objects	   (trips).	   These	   objects	   encapsulate	   a	   Date	  

Figure 4 Android App User Interface 



time	  when	  the	  trip	  took	  place.	  Trips	  are	  associated	  with	  
users	  by	  storing	  the	  user’s	  unique	  key.	  This	  backwards	  
associativity	  increases	  the	  search	  space	  in	  the	  database,	  
but	  provides	  optimal	  data	  object	  size.	  The	   lowest	   layer	  
in	   the	   data	   model	   hierarchy	   is	   the	   VaytaPoint	   object	  
(point),	  which	  encapsulates	  instantaneous	  driving	  data.	  
Each	   trip	   is	   associated	  with	  multiple	   points,	   and	   these	  
points	  are	  also	  backwards	  associative	  with	  their	  trip.	  
Security	   was	   not	   a	   primary	   concern	   in	   this	   web	  
application.	   When	   users	   sign	   in,	   if	   the	   username	   and	  
password	   combination	   is	   recognized	   in	   the	   database,	  
then	   their	   identity	   is	   saved	   in	   a	   cookie.	   This	   cookie	  
serves	   as	   validation	   in	   the	   application.	   For	   instance,	  
visiting	   the	   user’s	   front	   page	   with	   a	   recognized	  
username	   set	   in	   the	   cookie	   will	   load	   that	   user’s	   data.	  
	  
For	  the	  user’s	   front	  page,	  the	  application	  loads	  all	   trips	  
from	   the	   database	   with	   a	   user	   key	   that	   matches	   the	  
username	   set	   in	   the	   cookie.	   It	   displays	   these	   trips	   as	   a	  
string	   and	   wraps	   them	   in	   an	   anchor	   that	   links	   to	   the	  
maps	   display	   page.	   The	   maps	   display	   page	   takes	   an	  
HTTP	  get	  parameter	  that	  is	  the	  key	  of	  the	  selected	  trip.	  
The	  maps	   display	   page	   loads	   all	   the	   points	  with	   a	   trip	  
key	   that	  matches	   the	  key	  passed	  as	  a	  get	  parameter.	   It	  
loads	  a	  Google	  Map	  using	  Javascript	  in	  road	  view	  mode	  
centered	  on	  the	  first	  GPS	  coordinate	  of	  the	  trip.	  Then	  for	  
each	   of	   the	   points	   from	   the	   trip,	   the	   script	   places	   a	  
marker	   on	   the	  map	   at	   the	   points	   GPS	   coordinates	   and	  
connects	   these	   markers	   with	   a	   path.	   The	   script	   also	  
adds	  an	  event	  listener	  to	  each	  of	  the	  markers	  such	  that	  a	  
Javascript	  handler	  will	  retrieve	  the	  points	  data	  on	  click	  
and	  display	  them	  in	  a	  tabular	  format	  on	  the	  side	  of	  the	  
map. 	  
To	  upload	  data	  from	  the	  Android	  app,	  there	  is	  a	  servlet	  
that	  accepts	  XML	  files	  as	  HTTP	  post	  requests.	  The	  XML	  
is	  in	  a	  pre-‐determined	  format	  that	  represents	  trip	  data.	  
The	   servlet	   reads	   the	   file	   and	   parses	   it	   using	   the	   SAX	  
protocol	   into	   the	   application’s	   data	   model	  
representation	  of	  users,	  trips,	  and	  points.	  At	  the	  time	  of	  
this	  writing,	  there	  is	  a	  bug	  that	  prevents	  uploading	  this	  
data,	   but	   this	   accurately	  describes	   the	   intent	   and	  what	  
was	  attempted	  to	  implement	  the	  data	  transfer. 	  

4. EVALUATION AND RESULTS 
After building the hardware device and completing the 
Android App and Google App, we were able to 
successfully record data from several trips in a car.  Our 
hardware device connected without issues using the ISO 
protocol, saved the data, and uploaded it to the Android 
phone.  The Android App saved the data, displayed a live 
view, tagged the data with GPS coordinates, and uploaded 
to a server using FTP.  We were then able to open the XML 
files and successfully viewed the data collected from the 
vehicle.  We were hoping to collect a full set of 

measurements every second, but using the ISO 14230 
protocol we were only able to collect a full set every 3-4 
seconds.  Unfortunately, we did not have enough time to 
complete the integration with the Google App, so the data 
could not be uploaded directly to the Web portal. 

5. DISCUSSION 

5.1 Our Solution 
Our solution accomplishes our basic goals. The hardware 
interfaces with a car's diagnostic port and gathers 
information. This information is transmitted through an 
Android phone to the web portal. The web portal can then 
analyze the data and, when GPS coordinates are included, 
plot that data onto a map. These goals have been realized 
with the process of collecting and uploading real-world 
data. 
However, there are a couple of points that didn't turn out as 
well as we had hoped. On the hardware front, we originally 
had planned to make use of every protocol. In the end, we 
only had the ISO 9141 and ISO 14230 communication 
protocols working. While this does limit the usefulness 
somewhat, many vehicles on the road today use one of 
these protocols and we had no problem finding one to test 
with. The major disadvantage of being forced to use ISO 
was the speed, as a data-slice takes approximately 3.5 
seconds rather than less than a second when using PWM or 
VPW. 
Additionally, our current data collection and storage system 
is static. It does not provide the ability for a live feed of 
data. The inconsistency of PIDs supported between 
vehicles is another problem we did not address. A dynamic 
request system could check for which PIDs are available 
and only make those requests in order to save time. Having 
a page erase memory module would also allow for more 
flexible memory storage, as would updating the EEPROM 
pointers only when going into sleep mode or detecting a 
power down.  
The main goals of the Android application were to: 1) 
Collect data from the hardware,  2) Store the data on the 
device, and 3) Transmit that data the Google App.   The 
first two goals were completed successfully.  We were able 
to collect data from the hardware over Bluetooth, convert 
the data to correct units and display it to the user, and store 
the data on the phone for future use.  The final goal was 
partially successful.  We were able to upload XML data to 
a server over FTP, but we ran out of time before we were 
able to send the data to the Google App.  
For the web portal we had meant to perform automatic 
analysis and present only the most relevant information to 
the user. However, the web portal currently only presents a 
subset of the data collected from the car in raw format. 
Also the web portal is not the complete application that we 
had discussed. It only supports the primary feature of 



presenting users' driving data. Some of the secondary 
features include analyzing when a car is due for a check-up, 
calculating an eco-score, and sharing information between 
users in a community-driven web space. These secondary 
features were not implemented. 

5.2 Future Work 
While we were able to develop a working prototype that 
accomplished many of our goals, we simply did not have 
enough time to provide all of the functionality that we 
would have liked.  If work on the device continues, the 
following areas should be addressed: 
- Support for multiple OBD protocols. Currently, the 
device only works with the ISO 9141 and ISO 14230 
protocols.  The hardware should support 8 protocols total, 
but we were not able to get it to work reliably with any of 
the others. 
- Make the hardware device smaller.  The hardware 
device ended up being larger than we wanted in order to fit 
all of the components.  Ideally, the device would be a small 
box connected directly to the OBD connector, rather than a 
large box connected by a cable.  Our hardware device is 
about 4"x7" and must sit on the floor, which could present 
a safety hazard. 
- Dynamic Memory Structure. The flash memory module 
that we used was somewhat limiting in the way it could 
store data.  The data structure we had to use was very rigid 
and does not allow for varying PID support. 
- Detect car ignition state. Make changes to allow the 
hardware device to stay plugged in and detect when the car 
is turned on (and go into low power mode when the car is 
off). 
- Collect data every second.  We would like to collect data 
on regular intervals, preferably once per second, regardless 
of the protocol that is being used.  The firmware would 
need to be optimized for each protocol in order to 
accomplish this. 
- Keep time on the hardware. In order to properly 
perform calculations with the data, the exact time that the 
measurement was taken is needed.  Currently, the data is 
time stamped when it is uploaded to the phone, which 
could have very little to do with when it was taken.  The 
hardware device does not have a real-time clock, but we 
should be able to approximate by periodically synching the 
time from the Android phone. 
- Fix bugs in data upload to website. We did not have 
time to properly integrate the communication of data 
between the Android app and the Google app.  This 
severely limits the usefulness of the device and should be a 
priority. 
- Conserve smart phone battery life. Make changes to the 
Android app that takes battery life into consideration (e.g. 
controlling when GPS in on). 

- Make data upload an automatic process for the 
Android app.  The less the end user needs to do, the more 
likely they are to use the device.  If we can let the Android 
app run in the background and automatically start/end trips 
and upload data it could greatly increase usage of the 
device. 
- View/clear trouble codes.  Most similar products on the 
market allow the user to view and clear trouble codes.  We 
did not have time to implement this function, but it should 
be fairly simple and would open up another market for the 
device. 

5.3 Hindsight 
The ELM was responsible for saving a considerable 
amount of time, already designed and programmed for 
communicating with the OBD-II port. However, it also 
happens to be a large limitation within our design. It takes a 
considerable amount of space on our board and was 
originally designed for human interaction, translating 
everything into ASCII and including non-data characters. A 
future approach, with more time available, would exclude 
the ELM from its design. Instead, we would program all of 
the functions of the ELM onto the microcontroller. This 
would also allow for a smaller microcontroller, as one less 
UART port would be required. 
There are several changes to make in the Android 
application.  First, data upload would be automatic. 
 Currently, the user must manually upload data for a whole 
trip after the trip is completed.  In the future, the 
application would automatically stream data up to the 
Google App during a trip if an Internet connection was 
available.  If no Internet connection was available during a 
trip, then the application would automatically batch the 
data up the next time it gets an internet connection.  
Second, battery life concerns would be considered.  The 
GPS receiver can drain battery quickly if it is used too 
much.  Also, since the main functions of the application run 
in the background, it is possible that the background service 
drains a lot of battery.  Requiring the Bluetooth module to 
be on so much also reduces the battery life of the phone.  
Third, the user interface could be made more user friendly 
since most of the development was focused on other parts 
of the application. 
There are only two noteworthy changes that could be made 
to the web portal. The first is to rigorously analyze and 
optimize the database. We implemented the database to 
minimize the size of data objects, but this came at the cost 
of additional time complexity in queries. This was not a 
problem in our alpha, because there was very limited data. 
The second change is that we should analyze security risks. 
We reasoned that in alpha, we can trust our users, but 
before releasing the product, we should perform a security 
audit. 



6. CONCLUSION 
With rising fuel prices and concerns about global warming, 
people are more concerned than ever with decreasing fuel 
usage.  When drivers are provided with data about their 
driving habits (such as average mileage), they can easily 
decrease their fuel consumption, sometimes significantly. 
 When combined with route information, drivers would be 
able to compare and modify routes based on mileage 
information.  The successful development of a working 
prototype indicates that this type of product could be 
introduced into the market.  If the device could be made to 
support most smart phone platforms, made easy enough to 
use, and the price brought low enough, our device could 
help to significantly reduce fuel usage, which would have 
the added benefit of reducing CO2 emissions.  Also, with a 
large enough user base it would be possible use 
competition to encourage users to reduce fuel usage even 
further.  It may also be possible to start harvesting for 
specific models of vehicles and possibly predict vehicle 
breakdowns and suggest vehicle-specific preventative 
maintenance.  While there is still a lot of work that could be 

done to refine the device and make it more robust, our 
project has met most of its goals and shown that it is 
possible to develop this type of product. 
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